Controlled growth of 1D and 2D ZnO nanostructures on 4H-SiC using Au catalyst
نویسندگان
چکیده
A perfect control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic device/systems. In this article, we demonstrate the growth of various ZnO-derived nanostructures, including well-ordered arrays of high aspect ratio single crystalline nanowires with preferred growth direction along the [0001] axis, nanowalls, and hybrid nanowire-nanowall structures. The growths of the various ZnO nanostructures have been carried out on SiC substrates in a horizontal furnace, using Au thin film as catalyst. From experimental observations, we have ascribed the growth mechanisms of the different ZnO nanostructures to be a combination of catalytic-assisted and non-catalytic-assisted vapor-liquid-solid (VLS) processes. We have also found that the different ZnO nanoarchitectures' material evolution is governed by a Zn cluster drift effects on the SiC surface mainly driven by growth temperature. Au thin film thickness, growth time, and temperature are the parameters to optimize in order to obtain the different ZnO nanoarchitectures.
منابع مشابه
Density Controlled Growth of ZnO Nanowall–Nanowire 3D Networks
This paper presents the synthesis of wafer scale 3D ZnO nanoarchitectures composed of an array of 1D nanowires (NWs) embedded in 2D nanowalls by the vapor−liquid−solid (VLS) method. The effects of oxygen concentration and growth temperature on the density of nanostructures were studied. The 3D ZnO nanostructures were synthesized on c-plane GaN-on-sapphire substrate utilizing high purity ZnO pow...
متن کاملEffects of substrate annealing on the gold-catalyzed growth of ZnO nanostructures
The effects of thermal substrate pretreatment on the growth of Au-catalyzed ZnO nanostructures by pulsed laser deposition are investigated. C-plane sapphire substrates are annealed prior to deposition of a thin Au layer. Subsequent ZnO growths on substrates annealed above 1,200°C resulted in a high density of nanosheets and nanowires, whereas lower temperatures led to low nanostructure densitie...
متن کاملLuminescence Properties of ZnO Nanostructures and Their Implementation as White Light Emitting Diodes (LEDs)
In the past decade the global research interest in wide band gap semiconductors has been focused on zinc oxide (ZnO) due to its excellent and unique properties as a semiconductor material. The high electron mobility, high thermal conductivity, good transparency, wide and direct band gap (3.37 eV), large exciton binding energy (60 meV) at room temperature and easiness of growing it in the nanost...
متن کاملAutocatalytic growth of ZnO nanorods from flat Au(111)-supported ZnO films.
Physical vapour deposition of ZnO on an Au(111) support has been investigated as a function of the oxygen chemical potential by means of scanning tunnelling microscopy and luminescence spectroscopy. Whereas a layer-by-layer growth of ZnO is revealed in oxygen excess, formation of oxide nanorods with large height-to-diameter ratio prevails at lower oxygen chemical potentials. We ascribe the form...
متن کاملSynthesis and characterization of one-dimensional Ag-doped ZnO/Ga-doped ZnO coaxial nanostructure diodes.
In the pursuit of high injection current diode nanodevices, entire one-dimensional (1D) ZnO coaxial nanostructures with p-n homojunctions is one of the ideal structures. In this study, we synthesized entire 1D ZnO-based coaxial homojunction diodes with p-type Ag-doped ZnO (SZO) nanostructure shells covering n-type Ga-doped ZnO (GZO) nanopagoda (NPG) cores by a metal-organic chemical vapor depos...
متن کامل